Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.265
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(5): e9701, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355882

RESUMO

RATIONALE: Nitrogen mustards (NMs) are blistering chemical warfare agents. The ability to detect NMs in environmental samples is very important for obtaining forensic evidence. The most common analytical techniques for NM detection are gas chromatography-mass spectrometry, which detects NMs in their intact form but is disadvantaged by high limits of detection (LODs), and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) of their hydrolysis products, which do not provide robust evidence to support NM use. METHODS: We developed a novel approach to detect and identify NMs using LC/ESI-MS/MS after chemical derivatization. The method is based on ethoxide-promoted ethanolysis prior to analysis. The effects of reaction time, temperature, ethoxide concentration and chromatography behavior were studied and optimized. In the developed procedure, 0.1% (v/v) sodium ethoxide solution is added to the NMs in ethanol and agitated for 2 h at 50°C, followed by LC/ESI-MS/MS, without any other pretreatment. RESULTS: The ethanolysis reaction efficiencies were evaluated in ethanolic extracts from soil, asphalt, and ethanol contaminated with 0.5% (v/v) diesel fortified with NMs at a five-point calibration curve. The calibration curves showed good linearity in the range of 0.05-1 ng/mL, with an R2 value of 0.99, and were similar to those of LC/MS-grade ethanol, with almost no observable matrix effects. The derivatization products were stable at room temperature, with LODs of 10 pg/mL, in all investigated extracts. CONCLUSIONS: Through this newly developed strategy, the derivatization of active NMs by ethanolysis was achieved for the first time, and these derivatization products can serve as specific indicators for the use and presence of NMs. The methodology can also verify trace levels of NM chemical warfare agents collected in war or terror scenarios in forensic investigations.


Assuntos
Substâncias para a Guerra Química , Compostos de Mostarda Nitrogenada , Mecloretamina/análise , Substâncias para a Guerra Química/química , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida/métodos , Compostos de Mostarda Nitrogenada/análise , Etanol , Cromatografia Líquida de Alta Pressão/métodos
2.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38255815

RESUMO

Vesicating chemicals like sulfur mustard (SM) or nitrogen mustard (NM) can cause devastating damage to the eyes, skin, and lungs. Eyes, being the most sensitive, have complicated pathologies that can manifest immediately after exposure (acute) and last for years (chronic). No FDA-approved drug is available to be used as medical counter measures (MCMs) against such injuries. Understanding the pathological mechanisms in acute and chronic response of the eye is essential for developing effective MCMs. Here, we report the clinical and histopathological characterization of a mouse model of NM-induced ocular surface injury (entire surface) developed by treating the eye with 2% (w/v) NM solution for 5 min. Unlike the existing models of specific injury, our model showed severe ocular inflammation, including the eyelids, structural deformity of the corneal epithelium and stroma, and diminished visual and retinal functions. We also observed alterations of the inflammatory markers and their expression at different phases of the injury, along with an activation of acidic sphingomyelinase (aSMase), causing an increase in bioactive sphingolipid ceramide and a reduction in sphingomyelin levels. This novel ocular surface mouse model recapitulated the injuries reported in human, rabbit, and murine SM or NM injury models. NM exposure of the entire ocular surface in mice, which is similar to accidental or deliberate exposure in humans, showed severe ocular inflammation and caused irreversible alterations to the corneal structure and significant vision loss. It also showed an intricate interplay between inflammatory markers over the injury period and alteration in sphingolipid homeostasis in the early acute phase.


Assuntos
Traumatismos Oculares , Gás de Mostarda , Humanos , Animais , Camundongos , Coelhos , Mecloretamina/toxicidade , Traumatismos Oculares/induzido quimicamente , Pálpebras , Modelos Animais de Doenças , Gás de Mostarda/toxicidade , Esfingolipídeos , Inflamação
3.
J Pharmacol Exp Ther ; 388(2): 586-595, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37188530

RESUMO

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause pulmonary injury that can progress to fibrosis. NM toxicity is associated with an influx of inflammatory macrophages in the lung. Farnesoid X receptor (FXR) is a nuclear receptor involved in bile acid and lipid homeostasis that has anti-inflammatory activity. In these studies, we analyzed the effects of FXR activation on lung injury, oxidative stress, and fibrosis induced by NM. Male Wistar rats were exposed to phosphate-buffered saline (vehicle control) or NM (0.125 mg/kg) by intratracheal Penncentury-MicroSprayer aerosolization; this was followed by treatment with the FXR synthetic agonist, obeticholic acid (OCA, 15 mg/kg), or vehicle control (0.13-0.18 g peanut butter) 2 hours later and then once per day, 5 days per week thereafter for 28 days. NM caused histopathological changes in the lung, including epithelial thickening, alveolar circularization, and pulmonary edema. Picrosirius red staining and lung hydroxyproline content were increased, indicative of fibrosis; foamy lipid-laden macrophages were also identified in the lung. This was associated with aberrations in pulmonary function, including increases in resistance and hysteresis. Following NM exposure, lung expression of HO-1 and iNOS, and the ratio of nitrates/nitrites in bronchoalveolar lavage fluid (BAL), markers of oxidative stress increased, along with BAL levels of inflammatory proteins, fibrinogen, and sRAGE. Administration of OCA attenuated NM-induced histopathology, oxidative stress, inflammation, and altered lung function. These findings demonstrate that FXR plays a role in limiting NM-induced lung injury and chronic disease, suggesting that activating FXR may represent an effective approach to limiting NM-induced toxicity. SIGNIFICANCE STATEMENT: In this study, the role of farnesoid-X-receptor (FXR) in mustard vesicant-induced pulmonary toxicity was analyzed using nitrogen mustard (NM) as a model. This study's findings that administration of obeticholic acid, an FXR agonist, to rats reduces NM-induced pulmonary injury, oxidative stress, and fibrosis provide novel mechanistic insights into vesicant toxicity, which may be useful in the development of efficacious therapeutics.


Assuntos
Ácido Quenodesoxicólico/análogos & derivados , Lesão Pulmonar , Mecloretamina , Ratos , Masculino , Animais , Mecloretamina/toxicidade , Irritantes/efeitos adversos , Ratos Wistar , Pulmão , Fibrose , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Lesão Pulmonar/metabolismo , Estresse Oxidativo , Lipídeos
4.
Clin Lymphoma Myeloma Leuk ; 24(1): 40-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37802679

RESUMO

INTRODUCTION: Chlormethine (CL) gel was approved for treatment of mycosis fungoides based on the pivotal 201 trial (NCT00168064). Data visualization from individual patients is a powerful tool for discovery of hidden treatment trends. Here, we present a post hoc analysis of individual patient data from the pivotal trial to provide a more granular depiction of treatment and response changes over time, with an emphasis on end of treatment status. MATERIALS AND METHODS: Individual patient response data were plotted over a 12-month treatment period to visualize patient experiences while using CL gel. Responder status was assigned according to end-of-treatment Composite Assessment of Index Lesion Severity (CAILS) score, and patients were classified as early (≤4 months) or late responders based on timing of response. Baseline and active treatment characteristics were compared between early and late responders, and baseline body surface area (BSA) was compared between responders and patients with stable or progressive disease. RESULTS: Data from 123 patients with baseline and postbaseline results were included. At the end of treatment, 64.2%/55.3% were responders, 30.9%/34.1% had stable disease, and 4.9%/10.6% had progressive disease by CAILS and mSWAT, respectively. Among patients who responded to treatment, 64.6% and 35.4% were early and late responders, respectively. Response pattern analysis also identified patients with an intermittent response or initial progressive disease. Baseline BSA was not associated with responder status. Late responders had longer treatment duration and higher postbaseline plaque elevation, while early responders had a higher frequency of dermatitis. CONCLUSIONS: Results presented here can facilitate optimal treatment experiences for patients starting CL gel.


Assuntos
Micose Fungoide , Neoplasias Cutâneas , Humanos , Mecloretamina/uso terapêutico , Micose Fungoide/diagnóstico , Micose Fungoide/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Ensaios Clínicos Fase II como Assunto
5.
J Pharmacol Exp Ther ; 388(2): 518-525, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37914413

RESUMO

Nitrogen mustard (NM) is a known surrogate of sulfur mustard, a chemical-warfare agent that causes a wide range of ocular symptoms, from a permanent reduction in visual acuity to blindness upon exposure. Although it has been proposed that the two blistering agents have a similar mechanism of toxicity, the mode of NM-induced cell death in ocular tissue has not been fully explored. Therefore, we hypothesized that direct ocular exposure to NM in mice leads to retinal tissue injury through chronic activation of the unfolded protein response (UPR) PERK arm in corneal cells and VEGF secretion, eventually causing cell death. We topically applied NM directly to mice to analyze ocular and retinal tissues at 2 weeks postexposure. A dramatic decline in retinal function, measured by scotopic and photopic electroretinogram responses, was detected in the mice. This decline was associated with enhanced TUNEL staining in both corneal and retinal tissues. In addition, exposure of corneal cells to NM revealed 228 differentially and exclusively expressed proteins primarily associated with the UPR, ferroptosis, and necroptosis. Moreover, these cells exhibited activation of the UPR PERK arm and an increase in VEGF secretion. Enhancement of VEGF staining was later observed in the corneas of the exposed mice. Therefore, our data indicated that the mechanism of NM-induced ocular toxicity should be carefully examined and that future research should identify a signaling molecule transmitted via a prodeath pathway from the cornea to the retina. SIGNIFICANCE STATEMENT: This study demonstrated that NM topical exposure in mice results in dramatic decline in retinal function associated with enhanced TUNEL staining in both corneal and retinal tissues. We also found that the NM treatment of corneal cells resulted in 228 differentially and exclusively expressed proteins primarily associated with ferroptosis. Moreover, these cells manifest the UPR PERK activation and an increase in VEGF secretion. The latter was also found in the corneas of the cexposed mice.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Animais , Camundongos , Mecloretamina/toxicidade , Mecloretamina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neuropatia Óptica Tóxica , Córnea , Substâncias para a Guerra Química/toxicidade , Gás de Mostarda/toxicidade , Gás de Mostarda/metabolismo , Resposta a Proteínas não Dobradas
6.
J Pharmacol Exp Ther ; 388(2): 484-494, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37474260

RESUMO

Sulfur mustard (SM), a vesicating agent first used during World War I, remains a potent threat as a chemical weapon to cause intentional/accidental chemical emergencies. Eyes are extremely susceptible to SM toxicity. Nitrogen mustard (NM), a bifunctional alkylating agent and potent analog of SM, is used in laboratories to study mustard vesicant-induced ocular toxicity. Previously, we showed that SM-/NM-induced injuries (in vivo and ex vivo rabbit corneas) are reversed upon treatment with dexamethasone (DEX), a US Food and Drug Administration-approved, steroidal anti-inflammatory drug. Here, we optimized NM injuries in ex vivo human corneas and assessed DEX efficacy. For injury optimization, one cornea (randomly selected from paired eyes) was exposed to NM: 100 nmoles for 2 hours or 4 hours, and 200 nmoles for 2 hours, and the other cornea served as a control. Injuries were assessed 24 hours post NM-exposure. NM 100 nmoles exposure for 2 hours was found to cause optimal corneal injury (epithelial thinning [∼69%]; epithelial-stromal separation [6-fold increase]). In protein arrays studies, 24 proteins displayed ≥40% change in their expression in NM exposed corneas compared with controls. DEX administration initiated 2 hours post NM exposure and every 8 hours thereafter until 24 hours post-exposure reversed NM-induced corneal epithelial-stromal separation [2-fold decrease]). Of the 24 proteins dysregulated upon NM exposure, six proteins (delta-like canonical Notch ligand 1, FGFbasic, CD54, CCL7, endostatin, receptor tyrosine-protein kinase erbB-4) associated with angiogenesis, immune/inflammatory responses, and cell differentiation/proliferation, showed significant reversal upon DEX treatment (Student's t test; P ≤ 0.05). Complementing our animal model studies, DEX was shown to mitigate vesicant-induced toxicities in ex vivo human corneas. SIGNIFICANCE STATEMENT: Nitrogen mustard (NM) exposure-induced injuries were optimized in an ex vivo human cornea culture model and studies were carried out at 24 h post 100 nmoles NM exposure. Dexamethasone (DEX) administration (started 2 h post NM exposure and every 8 h thereafter) reversed NM-induced corneal injuries. Molecular mediators of DEX action were associated with angiogenesis, immune/inflammatory responses, and cell differentiation/proliferation, indicating DEX aids wound healing via reversing vesicant-induced neovascularization (delta-like canonical Notch ligand 1 and FGF basic) and leukocyte infiltration (CD54 and CCL7).


Assuntos
Substâncias para a Guerra Química , Lesões da Córnea , Gás de Mostarda , Animais , Humanos , Coelhos , Mecloretamina/toxicidade , Irritantes/efeitos adversos , Substâncias para a Guerra Química/toxicidade , Ligantes , Córnea , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/tratamento farmacológico , Lesões da Córnea/metabolismo , Gás de Mostarda/toxicidade , Dexametasona/farmacologia , Dexametasona/uso terapêutico
7.
J Pharmacol Exp Ther ; 388(2): 506-517, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37442618

RESUMO

The ocular surface comprises the wet mucosal epithelia of the cornea and conjunctiva, the associated glands, and the overlying tear film. Epitheliopathy is the common pathologic outcome when the ocular surface is subjected to oxidative stress. Whether different stresses act via the same or different mechanisms is not known. Dynasore and dyngo-4a, small molecules developed to inhibit the GTPase activity of classic dynamins DNM1, DNM2, and DNM3, but not mdivi-1, a specific inhibitor of DNM1L, protect corneal epithelial cells exposed to the oxidant tert-butyl hydroperoxide (tBHP). Here we report that, while dyngo-4a is the more potent inhibitor of endocytosis, dynasore is the better cytoprotectant. Dynasore also protects corneal epithelial cells against exposure to high salt in an in vitro model of dysfunctional tears in dry eye. We now validate this finding in vivo, demonstrating that dynasore protects against epitheliopathy in a mouse model of dry eye. Knockdown of classic dynamin DNM2 was also cytoprotective against tBHP exposure, suggesting that dynasore's effect is at least partially on target. Like tBHP and high salt, exposure of corneal epithelial cells to nitrogen mustard upregulated the unfolded protein response and inflammatory markers, but dynasore did not protect against nitrogen mustard exposure. In contrast, mdivi-1 was cytoprotective. Interestingly, mdivi-1 did not inhibit the nitrogen mustard-induced expression of inflammatory cytokines. We conclude that exposure to tBHP or nitrogen mustard, two different oxidative stress agents, cause corneal epitheliopathy via different pathologic pathways. SIGNIFICANCE STATEMENT: Results presented in this paper, for the first time, implicate the dynamin DNM2 in ocular surface epitheliopathy. The findings suggest that dynasore could serve as a new topical treatment for dry eye epitheliopathy and that mdivi-1 could serve as a medical countermeasure for epitheliopathy due to nitrogen mustard exposure, with potentially increased efficacy when combined with anti-inflammatory agents and/or UPR modulators.


Assuntos
Síndromes do Olho Seco , Hidrazonas , Mecloretamina , Naftóis , Quinazolinonas , Camundongos , Animais , Mecloretamina/toxicidade , Mecloretamina/metabolismo , Síndromes do Olho Seco/induzido quimicamente , Síndromes do Olho Seco/tratamento farmacológico , Córnea , Lágrimas , Dinaminas
8.
J Pharmacol Exp Ther ; 388(2): 495-505, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37827703

RESUMO

The chemical warfare agent sulfur mustard and its structural analog nitrogen mustard (NM) cause severe vesicating skin injuries. The pathologic mechanisms for the skin injury following mustard exposure are poorly understood; therefore, no effective countermeasure is available. Previous reports demonstrated the protective activity of carvedilol, a US Food and Drug Administration (FDA)-approved ß-blocker, against UV radiation-induced skin damage. Thus, the current study evaluated the effects of carvedilol on NM-induced skin injuries in vitro and in vivo. In the murine epidermal cell line JB6 Cl 41-5a, ß-blockers with different receptor subtype selectivity were examined. Carvedilol and both of its enantiomers, R- and S-carvedilol, were the only tested ligands statistically reducing NM-induced cytotoxicity. Carvedilol also reduced NM-induced apoptosis and p53 expression. In SKH-1 mice, NM increased epidermal thickness, damaged skin architecture, and induced nuclear factor κB (NF-κB)-related proinflammatory genes as assessed by RT2 Profiler PCR (polymerase chain reaction) Arrays. To model chemical warfare scenario, 30 minutes after exposure to NM, 10 µM carvedilol was applied topically. Twenty-four hours after NM exposure, carvedilol attenuated NM-induced epidermal thickening, Ki-67 expression, a marker of cellular proliferation, and multiple proinflammatory genes. Supporting the in vitro data, the non-ß-blocking R-enantiomer of carvedilol had similar effects as racemic carvedilol, and there was no difference between carvedilol and R-carvedilol in the PCR array data, suggesting that the skin protective effects are independent of the ß-adrenergic receptors. These data suggest that the ß-blocker carvedilol and its enantiomers can be repurposed as countermeasures against mustard-induced skin injuries. SIGNIFICANCE STATEMENT: The chemical warfare agent sulfur mustard and its structural analog nitrogen mustard cause severe vesicating skin injuries for which no effective countermeasure is available. This study evaluated the effects of US Food and Drug Administration (FDA)-approved ß-blocker carvedilol on nitrogen mustard-induced skin injuries to repurpose this cardiovascular drug as a medical countermeasure.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Animais , Camundongos , Mecloretamina/toxicidade , Mecloretamina/metabolismo , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Carvedilol/metabolismo , Substâncias para a Guerra Química/toxicidade , Gás de Mostarda/farmacologia , Gás de Mostarda/toxicidade , Pele , Antagonistas Adrenérgicos beta/farmacologia
9.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L135-L148, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084407

RESUMO

Bronchiolitis obliterans (BO) is a fibrotic lung disease characterized by progressive luminal narrowing and obliteration of the small airways. In the nontransplant population, inhalation exposure to certain chemicals is associated with BO; however, the mechanisms contributing to disease induction remain poorly understood. This study's objective was to use single-cell RNA sequencing for the identification of transcriptomic signatures common to primary human airway epithelial cells after chemical exposure to BO-associated chemicals-diacetyl or nitrogen mustard-to help explain BO induction. Primary airway epithelial cells were cultured at air-liquid interface and exposed to diacetyl, nitrogen mustard, or control vapors. Cultures were dissociated and sequenced for single-cell RNA. Differential gene expression and functional pathway analyses were compared across exposures. In total, 75,663 single cells were captured and sequenced from all exposure conditions. Unbiased clustering identified 11 discrete phenotypes, including 5 basal, 2 ciliated, and 2 secretory cell clusters. With chemical exposure, the proportion of cells assigned to keratin 5+ basal cells decreased, whereas the proportion of cells aligned to secretory cell clusters increased compared with control exposures. Functional pathway analysis identified interferon signaling and antigen processing/presentation as pathways commonly upregulated after diacetyl or nitrogen mustard exposure in a ciliated cell cluster. Conversely, the response of airway basal cells differed significantly with upregulation of the unfolded protein response in diacetyl-exposed basal cells, not seen in nitrogen mustard-exposed cultures. These new insights provide early identification of airway epithelial signatures common to BO-associated chemical exposures.NEW & NOTEWORTHY Bronchiolitis obliterans (BO) is a devastating fibrotic lung disease of the small airways, or bronchioles. This original manuscript uses single-cell RNA sequencing for identifying common signatures of chemically exposed airway epithelial cells in BO induction. Chemical exposure reduced the proportion of keratin 5+ basal cells while increasing the proportion of keratin 4+ suprabasal cells. Functional pathways contributory to these shifts differed significantly across exposures. These new results highlight similarities and differences in BO induction across exposures.


Assuntos
Bronquiolite Obliterante , Diacetil , Humanos , Queratina-5/metabolismo , Diacetil/metabolismo , Mecloretamina/metabolismo , Mucosa Respiratória/metabolismo , Bronquiolite Obliterante/induzido quimicamente , Bronquiolite Obliterante/metabolismo , Células Epiteliais/metabolismo
10.
Exp Eye Res ; 236: 109657, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37722586

RESUMO

Exposure to mustard agents, such as sulfur mustard (SM) and nitrogen mustard (NM), often results in ocular surface damage. This can lead to the emergence of various corneal disorders that are collectively referred to as mustard gas keratopathy (MGK). In this study, we aimed to develop a mouse model of MGK by using ocular NM exposure, and describe the subsequent structural changes analyzed across the different layers of the cornea. A 3 µL solution of 0.25 mg/mL or 5 mg/mL NM was applied to the center of the cornea via a 2-mm filter paper for 5 min. Mice were evaluated prior to and after exposure on days 1, 3, 7, 14, and 28 for 4 weeks using slit lamp examination with fluorescein staining. Anterior segment optical coherence tomography (AS-OCT) and in vivo confocal microscopy (IVCM) tracked changes in the epithelium, stroma, and endothelium of the cornea. Histologic evaluation was used to examine corneal cross-sections collected at the completion of follow-up. Following exposure, mice experienced central corneal epithelial erosion and thinning, accompanied by a decreased number of nerve branches in the subbasal plexus and increased activated keratocytes in the stroma in both dosages. The epithelium was recovered by day 3 in the low dose group, followed by exacerbated punctuate erosions alongside persistent corneal edema that arose and continued onward to four weeks post-exposure. The high dose group showed persistent epitheliopathy throughout the study. The endothelial cell density was reduced, more prominent in the high dose group, early after NM exposure, which persisted until the end of follow-up, along with increased polymegethism and pleomorphism. Microstructural changes in the central cornea at 4 weeks post-exposure included dysmorphic basal epithelial cells and reduced epithelial thickness, and in the limbal cornea included decreased cellular layers. We present a mouse model of MGK using NM that successfully replicates ocular injury caused by SM in humans who have been exposed to mustard gas.


Assuntos
Doenças da Córnea , Edema da Córnea , Úlcera da Córnea , Gás de Mostarda , Humanos , Animais , Camundongos , Gás de Mostarda/toxicidade , Mecloretamina/toxicidade , Córnea/patologia , Doenças da Córnea/induzido quimicamente , Doenças da Córnea/patologia , Úlcera da Córnea/patologia , Transtornos da Visão/patologia , Microscopia Confocal
11.
Cells ; 12(14)2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37508578

RESUMO

Sulfur mustard (SM) and nitrogen mustard (NM) are vesicant agents that cause skin injury and blistering through complicated cellular events, involving DNA damage, free radical formation, and lipid peroxidation. The development of therapeutic approaches targeting the multi-cellular process of tissue injury repair can potentially provide effective countermeasures to combat vesicant-induced dermal lesions. MG53 is a vital component of cell membrane repair. Previous studies have demonstrated that topical application of recombinant human MG53 (rhMG53) protein has the potential to promote wound healing. In this study, we further investigate the role of MG53 in NM-induced skin injury. Compared with wild-type mice, mg53-/- mice are more susceptible to NM-induced dermal injuries, whereas mice with sustained elevation of MG53 in circulation are resistant to dermal exposure of NM. Exposure of keratinocytes and human follicle stem cells to NM causes elevation of oxidative stress and intracellular aggregation of MG53, thus compromising MG53's intrinsic cell membrane repair function. Topical rhMG53 application mitigates NM-induced dermal injury in mice. Histologic examination reveals the therapeutic benefits of rhMG53 are associated with the preservation of epidermal integrity and hair follicle structure in mice with dermal NM exposure. Overall, these findings identify MG53 as a potential therapeutic agent to mitigate vesicant-induced skin injuries.


Assuntos
Irritantes , Mecloretamina , Camundongos , Humanos , Animais , Mecloretamina/toxicidade , Mecloretamina/metabolismo , Irritantes/metabolismo , Queratinócitos/metabolismo , Cicatrização/fisiologia , Proteínas de Membrana/metabolismo
12.
Exp Eye Res ; 233: 109565, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406956

RESUMO

Mustard agents are vesicants that were used in warfare multiple times. They are potent alkylating agents that activate cellular pathways of apoptosis, increase oxidative stress, and induce inflammation. Eyes are particularly susceptible to mustard exposure with a wide range of ocular surface damage. Three main categories of mustard-related eye injuries are acute, chronic, and delayed-onset manifestations. Mustard keratopathy (MK) is a known complication characterized by corneal opacification, ulceration, thinning, and neovascularization that can lead to severe vision loss and discomfort. Recently, a few reports demonstrated the role of senescence induction as a new pathological mechanism in mustard-related injuries that could affect wound healing. We ran the first murine model of delayed-onset MK and nitrogen mustard-induced senescence, evaluating the pathological signs of senescence in the cornea using beta-galactosidase staining. Our results suggest that nitrogen mustard exposure causes senescence in the corneal cells, which could be the underlying mechanism for chronic and late-onset ocular surface damage. We also found a significant correlation between the percentage of positive beta-galactosidase staining and the degree of fibrosis in the cornea. This provides valuable insight into the possible role of anti-senescence drugs in the near future for accelerating corneal healing and restricting fibrosis in patients with mustard keratopathy.


Assuntos
Substâncias para a Guerra Química , Doenças da Córnea , Gás de Mostarda , Humanos , Animais , Camundongos , Substâncias para a Guerra Química/toxicidade , Gás de Mostarda/toxicidade , Mecloretamina/toxicidade , Doenças da Córnea/patologia , Córnea/metabolismo , Senescência Celular
13.
J Eur Acad Dermatol Venereol ; 37(9): 1739-1748, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37262305

RESUMO

Mycosis fungoides (MF), the most common type of cutaneous T-cell lymphoma, is characterized by proliferation of malignant skin-tropic T cells. Progression from early-stage disease (skin patches and/or plaques) to more advanced stages (cutaneous tumours, erythroderma or extracutaneous involvement) occurs slowly and can be discontinuous. Prognosis is poor for the ~25% of patients who progress to advanced disease. Patients at any stage of MF may experience reduced health-related quality of life (QoL) via a spectrum of physically and psychologically debilitating symptoms that can impact many aspects of daily life. Allogeneic stem-cell transplantation is a curative treatment option for some patients with advanced disease, but otherwise there is currently no cure for MF; patients are often refractory to several treatments and require lifelong management. The goals of therapy are symptom control, prevention of disease progression, avoidance of treatment-related toxicity and maintenance/improvement of QoL. Although treatment regimens exist it can be difficult to know how to prioritize them, hence therapies are tailored according to patient needs and drug availabilities, following clinical recommendations. International consensus guidelines recommend skin-directed therapies (SDTs) as first-line treatment for early-stage disease, and SDTs combined with systemic therapy for advanced stages. Chlormethine (CL), also known as mechlorethamine, chlorethazine, mustine, HN2, caryolysine and embichin, is a synthetic deoxyribonucleic acid-alkylating agent that was used as a chemical weapon (mustard gas) during the First World War. Subsequent investigation revealed that survivors of mustard gas exposure had lymphocytopenia, and that CL could inhibit rapidly proliferating malignant T cells. CL has since been developed as a topical treatment for MF and prescribed as such for over 70 years. This review aims to summarize the current knowledge regarding the mechanism of action of CL in the cutaneous micro-environment, in the specific context of MF treatment.


Assuntos
Gás de Mostarda , Micose Fungoide , Neoplasias Cutâneas , Humanos , Mecloretamina/uso terapêutico , Qualidade de Vida , Gás de Mostarda/uso terapêutico , Micose Fungoide/patologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral
14.
Cells ; 12(11)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37296653

RESUMO

Sulfur mustard gas (SM) is a vesicating and alkylating agent used as a chemical weapon in many mass-casualty incidents since World War I. Ocular injuries were reported in >90% of exposed victims. The mechanisms underlying SM-induced blindness remain elusive. This study tested the hypothesis that SM-induced corneal fibrosis occurs due to the generation of myofibroblasts from resident fibroblasts via the SMAD2/3 signaling pathway in rabbit eyes in vivo and primary human corneal fibroblasts (hCSFs) isolated from donor corneas in vitro. Fifty-four New Zealand White Rabbits were divided into three groups (Naïve, Vehicle, SM-Vapor treated). The SM-Vapor group was exposed to SM at 200 mg-min/m3 for 8 min at the MRI Global facility. Rabbit corneas were collected on day 3, day 7, and day 14 for immunohistochemistry, RNA, and protein lysates. SM caused a significant increase in SMAD2/3, pSMAD, and ɑSMA expression on day 3, day 7, and day 14 in rabbit corneas. For mechanistic studies, hCSFs were treated with nitrogen mustard (NM) or NM + SIS3 (SMAD3-specific inhibitor) and collected at 30 m, 8 h, 24 h, 48 h, and 72 h. NM significantly increased TGFß, pSMAD3, and SMAD2/3 levels. On the contrary, inhibition of SMAD2/3 signaling by SIS3 treatment significantly reduced SMAD2/3, pSMAD3, and ɑSMA expression in hCSFs. We conclude that SMAD2/3 signaling appears to play a vital role in myofibroblast formation in the cornea following mustard gas exposure.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Humanos , Animais , Coelhos , Gás de Mostarda/toxicidade , Gás de Mostarda/metabolismo , Miofibroblastos/metabolismo , Substâncias para a Guerra Química/toxicidade , Substâncias para a Guerra Química/metabolismo , Córnea/metabolismo , Mecloretamina/metabolismo , Mecloretamina/farmacologia , Transdução de Sinais , Proteína Smad2/metabolismo
15.
Cancer Chemother Pharmacol ; 92(1): 1-6, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37199744

RESUMO

PURPOSE: The Stanford V chemotherapy regimen has been used to treat Hodgkin lymphoma (HL) patients since 2002 with excellent cure rates; however, mechlorethamine is no longer available. Bendamustine, a drug structurally similar to alkylating agents and nitrogen mustard, is being substituted for mechlorethamine in combination therapy in a frontline trial for low- and intermediate-risk pediatric HL patients, forming a new backbone of BEABOVP (bendamustine, etoposide, doxorubicin, bleomycin, vincristine, vinblastine, and prednisone). This study evaluated the pharmacokinetics and tolerability of a 180 mg/m2 dose of bendamustine every 28 days to determine factors that may explain this variability. METHODS: Bendamustine plasma concentrations were measured in 118 samples from 20 pediatric patients with low- and intermediate-risk HL who received a single-day dose of 180 mg/m2 of bendamustine. A pharmacokinetic model was fit to the data using nonlinear mixed-effects modeling. RESULTS: Bendamustine concentration vs time demonstrated a trend toward decreasing clearance with increasing age (p = 0.074) and age explained 23% of the inter-individual variability in clearance. The median (range) AUC was 12,415 (8,539, 18,642) µg hr/L and the median (range) maximum concentration was 11,708 (8034, 15,741) µg/L. Bendamustine was well tolerated with no grade 3 toxicities resulting in treatment delays of more than 7 days. CONCLUSIONS: A single-day dose of 180 mg/m2 of bendamustine every 28 days was safe and well tolerated in pediatric patients. While age accounted for 23% of inter-individual variability observed in bendamustine clearance, the differences did not affect the safety and tolerability of bendamustine in our patient population.


Assuntos
Doença de Hodgkin , Humanos , Criança , Doença de Hodgkin/tratamento farmacológico , Cloridrato de Bendamustina , Mecloretamina/efeitos adversos , Recidiva Local de Neoplasia/tratamento farmacológico , Doxorrubicina , Protocolos de Quimioterapia Combinada Antineoplásica
16.
Vet Comp Oncol ; 21(3): 503-508, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37222086

RESUMO

Multi-agent chemotherapy successfully induces remission in most naïve, high-grade canine lymphoma patients; however, disease recurrence is common. MOPP (mechlorethamine, vincristine, procarbazine, and prednisone) is an effective rescue protocol used to re-induce remission, but is associated with gastrointestinal toxicity and can be a less desirable option for patients that previously failed vincristine-containing protocols. Therefore, alternative members of the vinca alkaloid family, such as vinblastine, could be potentially advantageous as substitutes for vincristine to reduce gastrointestinal toxicity and chemoresistance. The objective of this study was to report the clinical outcomes and toxicity of 36 dogs with relapsed or refractory multicentric lymphoma treated with a modified MOPP protocol whereby vincristine was replaced with vinblastine (MVPP). The overall response rate to MVPP was 25% with a median progression free survival of 15 days and a median overall survival of 45 days. MVPP at the prescribed doses resulted in modest and transient clinical benefit, but was well tolerated with no treatment delays or hospitalizations secondary to side effects. Given the minimal toxicity, dose intensification could be considered to improve clinical responses.


Assuntos
Doenças do Cão , Linfoma não Hodgkin , Linfoma , Recidiva Local de Neoplasia , Animais , Cães , Prednisona/uso terapêutico , Vimblastina/uso terapêutico , Mecloretamina/uso terapêutico , Mecloretamina/efeitos adversos , Vincristina , Procarbazina/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/veterinária , Doenças do Cão/induzido quimicamente , Linfoma/tratamento farmacológico , Linfoma/veterinária , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/veterinária , Doxorrubicina/uso terapêutico
17.
Exp Eye Res ; 231: 109485, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37080381

RESUMO

The vesicant sulfur mustard (SM) is a chemical warfare agent that causes acute and chronic injury to the cornea and proximal anterior segment structures. Despite clinical evidence of SM-exposure causing unexplained retinal deficits, there have been no animal studies conducted to examine the retinal toxicity of this vesciant. The cardinal hallmark of retinal response to stressors or injury is the activation of reactive gliosis, a cellular process largely governed by Müller glia. Previously we showed that corneal exposure to sodium hydroxide elicits rapid induction of reactive gliosis and results in retinal degeneration in a dose-related manner. Based on this evidence, we hypothesized that the vesicant nitrogen mustard (NM), an analog of SM, may also elicit reactive gliosis. To test this idea, we developed a mouse model of NM ocular injury and investigated corneal and retinal effects focusing on citrullination, a posttranslational modification (PTM) of proteins. This PTM was recently linked to alkali injury and has also been shown to occur in retinal degenerative conditions. Here, we demonstrate that corneal exposure to 1% NM causes a synchronous activation of citrullination in both the cornea and retina with hypercitrullination becoming apparent temporally and manifesting with altered cellular expression characteristics. A key finding is that ocular citrullination occurs acutely as early as 1-h post-injury in both the cornea and retina, which underscores a need for expeditious interception of this acute corneal and retinal response. Moreover, exploiting dose response and temporal studies, we uncoupled NM-induced retinal citrullination from its induction of retinal gliosis. Our findings demonstrate that hypercitrullination is a common corneo-retinal mechanism that sensitizes the eye to NM injury and suggests that counteracting hypercitrullination may provide a suitable countermeasure to vesicant injury.


Assuntos
Traumatismos Oculares , Gás de Mostarda , Doenças Retinianas , Animais , Camundongos , Mecloretamina/toxicidade , Irritantes/efeitos adversos , Irritantes/metabolismo , Gliose/induzido quimicamente , Gliose/metabolismo , Córnea/metabolismo , Traumatismos Oculares/induzido quimicamente , Traumatismos Oculares/metabolismo , Retina , Gás de Mostarda/toxicidade , Doenças Retinianas/induzido quimicamente , Doenças Retinianas/metabolismo
18.
Skin Therapy Lett ; 28(2): 1-5, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37054720

RESUMO

Mycosis fungoides (MF) is the most common type of cutaneous T-cell lymphoma (CTCL), representing almost 50% of all lymphomas arising in the skin. There is an unmet need in the treatment of MF in Canada, as current available therapies for early-stage MF are limited, without topical agents previously indicated. Chlormethine gel is a topical antineoplastic agent with phase II clinical trial and real-world data demonstrating safety and efficacy as a treatment option for adults with MF. Skin-related side effects such as dermatitis can be managed through appropriate strategies. The use of chlormethine gel can be considered for patients with stage IA and IB MF-CTCL as it provides an easily administered, skin-directed treatment option that fills an unmet need in Canada.


Assuntos
Linfoma Cutâneo de Células T , Micose Fungoide , Neoplasias Cutâneas , Adulto , Humanos , Mecloretamina/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Micose Fungoide/tratamento farmacológico , Micose Fungoide/patologia , Linfoma Cutâneo de Células T/tratamento farmacológico , Linfoma Cutâneo de Células T/patologia , Pele
19.
DNA Repair (Amst) ; 125: 103485, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36989950

RESUMO

DNA interstrand crosslinks (ICLs) are toxic lesions that can block essential biological processes. Here we show Trypanosoma cruzi, the causative agent of Chagas disease, is susceptible to ICL-inducing compounds including mechlorethamine and novel nitroreductase-activated prodrugs that have potential in treating this infection. To resolve such lesions, cells co-opt enzymes from "classical" DNA repair pathways that alongside dedicated factors operate in replication-dependent and -independent mechanisms. To assess ICL repair in T. cruzi, orthologues of SNM1, MRE11 and CSB were identified and their function assessed. The T. cruzi enzymes could complement the mechlorethamine susceptibility phenotype displayed by corresponding yeast and/or T. brucei null confirming their role as ICL repair factors while GFP-tagged TcSNM1, TcMRE11 and TcCSB were shown to localise to the nuclei of insect and/or intracellular form parasites. Gene disruption demonstrated that while each activity was non-essential for T. cruzi viability, nulls displayed a growth defect in at least one life cycle stage with TcMRE11-deficient trypomastigotes also compromised in mammalian cell infectivity. Phenotyping revealed all nulls were more susceptible to mechlorethamine than controls, a trait complemented by re-expression of the deleted gene. To assess interplay, the gene disruption approach was extended to generate T. cruzi deficient in TcSNM1/TcMRE11 or in TcSNM1/TcCSB. Analysis demonstrated these activities functioned across two ICL repair pathways with TcSNM1 and TcMRE11 postulated to operate in a replication-dependent system while TcCSB helps resolve transcription-blocking lesions. By unravelling how T. cruzi repairs ICL damage, specific inhibitors targeting repair components could be developed and used to increase the potency of trypanocidal ICL-inducing compounds.


Assuntos
Trypanosoma cruzi , Animais , Trypanosoma cruzi/genética , Mecloretamina/farmacologia , Reparo do DNA , Dano ao DNA , DNA/metabolismo , Saccharomyces cerevisiae/genética , Mamíferos/genética
20.
Animal Model Exp Med ; 6(1): 57-65, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36872306

RESUMO

BACKGROUND: Sulfur mustard (SM) is a chemical warfare vesicant that severely injures exposed eyes, lungs, and skin. Mechlorethamine hydrochloride (NM) is widely used as an SM surrogate. This study aimed to develop a depilatory double-disc (DDD) NM skin burn model for investigating vesicant pharmacotherapy countermeasures. METHODS: Hair removal method (clipping only versus clipping followed by a depilatory), the effect of acetone in the vesicant administration vehicle, NM dose (0.5-20 µmol), vehicle volume (5-20 µl), and time course (0.5-21 days) were investigated using male and female CD-1 mice. Edema, an indicator of burn response, was assessed by biopsy skin weight. The ideal NM dose to induce partial-thickness burns was assessed by edema and histopathologic evaluation. The optimized DDD model was validated using an established reagent, NDH-4338, a cyclooxygenase, inducible nitric oxide synthase, and acetylcholinesterase inhibitor prodrug. RESULTS: Clipping/depilatory resulted in a 5-fold higher skin edematous response and was highly reproducible (18-fold lower %CV) compared to clipping alone. Acetone did not affect edema formation. Peak edema occurred 24-48 h after NM administration using optimized dosing methods and volume. Ideal partial-thickness burns were achieved with 5 µmol of NM and responded to treatment with NDH-4338. No differences in burn edematous responses were observed between males and females. CONCLUSION: A highly reproducible and sensitive partial-thickness skin burn model was developed for assessing vesicant pharmacotherapy countermeasures. This model provides clinically relevant wound severity and eliminates the need for organic solvents that induce changes to the skin barrier function.


Assuntos
Acetona , Irritantes , Feminino , Masculino , Animais , Camundongos , Acetilcolinesterase , Mecloretamina , Pele , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...